EFFECT OF *PANAX GINSENG* AND DIAZEPAM ON BRAIN 5-HYDROXYTRYPTAMINE AND ITS MODIFICATION BY DICLOFENAC IN RAT

D. BHATTCHARYYA* AND T. K. SUR

Department of Pharmacology,

Dr. B.C. Roy Post Graduate Institute of Basic Medical Sciences, University College of Medicine, 244B, Acharya J.C. Bose Road, Calcutta – 700 020

(Received on February 24, 1999)

Abstract: Wistar male rats pretreated with anti-stress agents like, Panax ginseng (Pg) and diazepam (Diaz) were stressed by restraining for 1 h and 5-HT content of brain and hypothalamus as well as plasma corticosterone were measured spectrophotoflurometrically. Diclofenac (DICLO), a prostaglandin (PG) synthesis inhibitor was used to confirm the role of prostaglandin in restraint stress-induced elevation of central 5-HT correspondingly confirmed by elevation of plasma corticosterone and modification of the above anti-stress agents. Pg, Diaz and DICLO per se did not modify brain and hypothalamic 5-HT in control rats. But they attenuated stress-induced elevation of brain and hypothalamic 5-HT. Antistress action of both Pg and Diaz reflected by inhibition of stress-induced elevation of brain and hypothalamic content of 5-HT as also stress-induced concurrent elevation of plasma corticosterone were further diminished by DICLO. The mediatory action of 5-HT in anti-stress effects of Pg and Diaz may be modulated through prostaglandins.

Key words : restraint stress diclofenac

5-HT	corticosterone	
Panax ginseng	prostaglandin	

INTRODUCTION

The prime reaction in stress is the activation of the hypothalamo-hypophysealadrenocortical axis (H-H-A axis). 5-HT plays an important role in the regulation of stressinduced activation of H-H-A axis (1-3). Stress also enchances the activity of central prostaglandins (4-5). The role of PGs in stimulation of the H-H-A axis has also been proposed (5-7). It has been reported that PGs enhance 5-HT level as well as 5-HT turnover (8-9).

Stress attenuating actions of diazepam and *Panax ginseng* are well documented (10-12). Earlier studies indicated that *Panax ginseng* (Pg) and diazepam (Diaz) in a dose dependent manner attenuated restraint stress-induced elevation of brain and hypothalamic 5-HT and simultaneously diminished restraint stress-induced

^{*}Corresponding Author

enhancement of plasma corticosterone (13-15). But their definite effect on the modification of 5-HT during stress could not be confirmed.

The purpose of this study was to examine the central action of DICLO, PG synthesis inhibitor (16) on the modifying effects of *Panax ginseng* and diazepam on 5-HTergic neurotransmission during restraint stress, measured by brain and hypothalamic 5-HT estimation with simultaneous estimation of plasma corticosterone as an index of H-H-A axis stimulation.

METHODS

Wistar strain male albino rats (120-150 g) were used. They were either segregated into groups of 10 for estimation of 5-HT or into groups of 12 for hypothalamic 5-HT, while plasma corticosterone was done in all animals. As the hypothalamii of 3 rats were pooled together to obtain the 5-HT level in hypothalamus, 12 rats were taken instead of 10 animals in groups for estimation of 5-HT in hypothalamus.

The animals were subjected to restraint stress for 1 h (RSI) as described earlier by completely immobilizing them (13-15). The anti-stress agents, Diaz (0.2 mg/kg) and Pg (50 mg/kg) were given intraperitoneally 30 min before the animals were subjected to stress. Animals were pretreated with DICLO (15 mg/kg) intraperitoneally 6 h prior to the experiment. The doses and duration of each drug were chosen based on earlier studies (14-15). Estimation of 5-HT on whole brain and hypothalamii (pooled from 3 rats) was done spectrophotofluorometrically following the method of Amar et al (17). The measurement of 5-HT was done by reading the fluorescence at 495 nm, with activation at 385 nm (SPEKOL 11, Carl Zeis, GDR). Plasma 11-hydroxycorticosteroid was estimated fluorimetrically by the method of Mattingly (18). The readings were taken at 530 nm with activation at 470 nm.

All values were presented as mean \pm SEM. Statistical comparisons were made by using Student "t" test. Statistical significance was considered as P<0.05.

RESULTS

Table I shows that in response to restraint stress (1h) there were elevations of 5-HT in brain (2.75 ± 0.12) and hypothalamus (3.28 ± 0.12) along with plasma corticosterone (71.28 ± 2.45) , where as pretreatments with Pg, Diaz and DICLO and DICLO *per se* did not change these parameters in comparison to their respective control group.

Pg significantly reduced elevations of 5-HT in brain (1.98 ± 0.05) , hypothalamus (2.24 ± 0.18) as also plasma corticosterone (58.18 ± 3.94) by RS1 are shown in Table II. Similarly, Diaz reduced RS1-induced increases of 5-HT in brain (2.02 ± 0.06) , hypothalamus (2.52 ± 0.22) as also plasma corticosterone (61.85 ± 1.52) which are shown in Table II. DICLO significantly diminished RS1-induced enhancement of 5-HT in brain (1.87 ± 0.08) , hypothalamus (2.42 ± 0.24) as also plasma corticosterone (49.32 ± 3.85) , shown again in Table II. Indian J Physiol Pharmacol 1999; 43(4)

Group	Treatment	Whole brain 5-HTª (n=10)	Hypothalamic 5-HTª (n=12)	Plasma corticosterone ^b (n=22)
1.	Control	0.85±0.03	1.74 ± 0.16	32.12±2.12
2.	RS1	2.75±0.12**	$3.28 \pm 0.12^{**}$	71.28±2.45**
3.	Pg	0.84 ± 0.06	1.82 ± 0.11	30.15 ± 3.42
4.	Diaz	0.83 ± 0.12	1.94 ± 0.18	29.24 ± 2.85
5.	DICLO	0.72 ± 0.15	1.53 ± 0.10	24.78 ± 3.92

TABLE I : Effect of restraint stress,	Panax ginseng, diazepam and diclofenac
on brain and hypothalam	ic 5-HT and plasma corticosterone.

Values are expressed as Mean \pm SEM

 $a = \mu g/g$ of wet tissue

 $h = \mu g/100 \text{ ml of blood}$

**P<0.001 as compared with control

TABLE II : Effect	of Panax ginseng, of	diazepam on	restraint s	stress-induced	enhancement o	f brain
and h	ypothalamic 5-HT a	nd plasma co	orticosteron	ne modification	by diclofenac.	

Group	Treatment	Whole brain 5-HTª (n=10)	Hypothalamic 5-HTª (n=12)	Plasma corticosterone ^b (n=22)	
1.	RS1	2.75 ± 0.12	3.28 ± 0.12	71.28 ± 2.45	
2.	RS1+Pg	$1.98 \pm 0.05^{**}$	$2.24 \pm 0.18^{**}$	$58.18 \pm 3.94^{**}$	
3.	RS1+Diaz	$2.02 \pm 0.06^{**}$	$2.52 \pm 0.22^*$	$61.85 \pm 1.52^*$	
4.	RS1+DICLO	$1.87 \pm 0.08^{**}$	$2.42 \pm 0.24^*$	$49.32 \pm 3.85^{**}$	
5.	RS1+Pg+DICLO	$1.54 \pm 0.14^*$	$1.57 \pm 0.08^*$	$39.68 \pm 3.76^{**}$	
6.	RS1+Diaz+DICLO	$1.54 \pm 0.07 * *$	$1.74 \pm 0.04^*$	45.25 ± 2.78**	

Values are expressed as Mean ± SEM

 $a = \mu g/g$ of wet tissue

 $b = \mu g/100 \text{ ml of blood}$

*P<0.01; **P<0.001

Group 2, 3 & 4 are compared with Group 1; Group 5 is compared with

Group 2; Group 6 is compared with Group 3

Table II also shows the effects of DICLO on the negating effect of Pg and Diaz on RS1-induced elevation of the same parameters. Significant accentuating effects of DICLO were thereby Pg antagonism of RS1-induced increases of 5-HT in brain (1.54 ± 0.14) and hypothalamus $(1.57 \pm 0.08))$ as also plasma corticosterone (39.68 ± 3.76) . Similar accentuations were seen on antagonism by Diaz on RS1-induced elevation of brain (1.54 ± 0.07) and hypothalamic (1.74 ± 0.04) 5-HT as also elevation of plasma corticosterone (45.25 ± 2.78) .

DISCUSSION

5-HT has been implicated in a variety of central neuronal system-mediated processes including anxiety and stress.

508 Bhattacharyya and Sur

Under the influence of any stressor, producing non-specific responses, changes are brought about in the concentration, synthesis, metabolism and turnover rate of 5-HT in the brain (19-20). It has been known that PGs markedly enhance rat brain 5-HT levels as well as 5-HT turnover (5, 8-9).

Restraint stress enhanced brain and hypothalamic content of 5-HT and plasma corticosterone in rat upto 1 h. Prologation of stress (more than 1 h) could not induce further enhancement in this parameter, probably due to adaptive changes (13-15). All subsequent experimentations were done with animals restrained for 1 h only, as before.

In our earlier studies, it was noted that Pg and Diaz significantly reduced RS1induced elevation of brain and hypothalamic content of 5-HT and plasma corticosterone (index of H-H-A axis activation) dose dependently, which justifies their anti-stress action (14-15).

Pg, Diaz and DICLO per se did not modify the control levels of brain and hypothalamic 5-HT and plasma corticosterone, showing negligible action on Indian J Physiol Pharmacol 1999; 43(4)

basal H-H-A axis function. DICLO, the PG synthesis inhibitor significantly diminished RS1-induced enhancement of brain and hypothalamic 5-HT as also plasma corticosterone. These observations point to the involvement of PGs in stressinduced enhancement of 5-HTergic supporting neurotransmission the hypothesis that PGs modulate 5-HTerigc neurotransmission (6, 8, 13, 15) even during restraint stress. In this study significant accentuation of the inhibitory effects of Pg and Diaz on RS1-induced elevation of brain and hypothalamic 5-HT and plasma corticosterone by DICLO were noted which further justifies the above statement.

It is suggested that PGs may be involved in H-H-A axis activation during stress through the positive modulation of 5-HTergic system and PGs may also be involved in stress attenuating effect of *Panax ginseng* and diazepam.

ACKNOWLEDGEMENT

This work was funded by a Research Grant from Indian Council of Medical Research, Government of India, New Delhi.

REFERENCES

- Assenmacher I, Szafarezyk A, Abuso G, Barbenel G. Physiology of neural pathways affecting CRH secretion. Ann NY Acad Sci 1988; 512: 149-161.
- Grossman A, Costa A. The regulation of hypothalamic CRH. Impact of *in vitro* studies on the control of the stress response. *Funct Neurol* 1993; 8:: 325-334.
- 3. Feldman S, Conforti N, Weidenfeld J. Limbic pathways and hypothalamic neurotransmitters

mediating adrenocortical responses to neural stimuli. Neurosci Biobehav Rev 1995;; 19: 235-240.

- 4. Hanukoglu I. Prostaglandins as first mediator of stress. Lancet 1977; 1: 193-197.
- Bhattacharya SK. Stress by restraining elevates prostagiandins in rat. Neurosci Letters 1982; 33: 165-168.
- 6. Wolfe LS. Arachidonic acid metabolities and the nervous system: an approval of the present

Indian J Physiol Pharmacol 1999; 43(4)

Effect of Panax Ginseng and Diazepam 509

situation. In Curtis-Prior PB. eds. Prostaglandins. Biology and Chemistry of Prostaglandin and related eicosanoids. Edinburgh, Churchi-Livingstone 1988; 411-421.

- Bugajski J, Gadek-Michalska A, Borycz J, Gold R, Bugajski AJ. Effect of indomethacin on the pituitary-adrenocortical response to adrenergic stimulation. Life Sci 1996; 59: 1157-1164.
- Haubrich DR, Perj-Cruet J, Reid WD. Prostaglandin E, causes sedation and increase 5-HT turnover in rat brain. Br J Pharmacol 1973; 48: 80-87.
- Bhattacharya SK, Bhattacharyya D. Prostaglandin synthesis inhabiters reduce cannabis and restraint stress induced increase in rat brain serotonin concentration. Z Natuforsch 1983; 38: 337-338.
- Brekman II, Dardymov IV. New substances of plant origin which increase non-specific resistance. Ann Rev Pharmacol Toxicol 1969; 9: 419-430.
- Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol 1992; 36: 27-38.
- Haleem DJ, Batool F. Regionally specific effects of diazepam on brain serotonin metabolism ion rats: sustained effects following repeated administration. *Life Sci* 1996; 59: 239-246.
- Bhattacharya SK, Bhattacharyya D. Effect of restraint stress on rat brain serotonin. J Biosci 1982; 4:: 269-274.

- Sur TK, Bhattacharyya D. The effect of Panax ginseng and diazepam on brain and hypothalamic 5-hydroxytryptamine during stress. Indian J Pharmacol 1997; 29: 318-321.
- 15. Sur TK, Bhattacharyya D. The effect of Panax ginseng and diazepam on brain and hypothalamic 5-hydroxytryptamine in rats : role of indomethacin, prostaglandin synthesis inhibitor. Ind J Physiol & Allied Sci (in press).
- 16. Vlaskovska M, Herting G, Knepel W. Adrenocorticotrophin and β -endorphin release from rat adrenohypophyses *in vitro*. Inhibition by prostaglandin E₂ formed locally in response to vessopressin and corticotropin releasing factor. *Endocrinol* 1984; 155: 895-901.
- Amar A, Mandal S, Sanyal AK. Effect of brain monoamine on the secretion of adrenocorticotrophic hormone. Acta Endocrinol 1982; 101: 180-186.
- Mattingly D. A simple fluorimetric method for the estimation of free 11-hydroxycorticosteroids in human plasma. J Clin Pathol 1962; 15: 374-379.
- Van de Kar LD. Neuroendocrine pharmacology of serotonergic (5-HT) neurons. Ann Rev Pharmacol Toxicol 1991; 31: 289-320.
- Zifa E, Fillion G. 5-Hydroxytryptamine receptors. *Pharmacol Rev* 1992; 44: 401-458.